An extended-G geometric family
نویسندگان
چکیده
We introduce and study the extended-G geometric family of distributions, which contains as special models some important distributions such as the XTG (Xie et al. 2002) geometric, Weibull geometric, Chen (Chen 2000) geometric, Gompertz geometric, among others. This family not only includes distributions with bathtub and unimodal failure rate functions but provides a broader class of monotone failure rates. Its density function can be expressed as a linear mixture of extended-G densities. We derive explicit expansions for the ordinary and incomplete moments, generating function, mean deviations and Rénvy entropy. The density of the order statistics can also be given as a linear mixture of extended-G densities. The model parameters are estimated by maximum likelihood. The potentiality of the new family is illustrated by means of an application to real data.
منابع مشابه
Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy
Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...
متن کاملThe Continuity of the Extended Family Structure within Contemporary Single-Family Houses Case Study: Afghan Immigrant Households in Iran
This research is aimed at reviving the positive aspects of extended family households. The impacts of extended family living on housing design are studied in two steps. In the first step, the history and precedents of extended family housing are explored in both traditional and modern societies. Aside from courtyard houses, numerous other models of extended family housing are introduced and it ...
متن کاملGlobal optimization of fractional posynomial geometric programming problems under fuzziness
In this paper we consider a global optimization approach for solving fuzzy fractional posynomial geometric programming problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm which achieves the optimal solution of the optimization problem by means of solving a sequence of subproblems ...
متن کاملExtended Modular Operad
This paper is a sequel to [LoMa] where moduli spaces of painted stable curves were introduced and studied. We define the extended modular operad of genus zero, algebras over this operad, and study the formal differential geometric structures related to these algebras: pencils of flat connections and Frobenius man-ifolds without metric. We focus here on the combinatorial aspects of the picture. ...
متن کاملSpectra of some new extended corona
For two graphs $mathrm{G}$ and $mathrm{H}$ with $n$ and $m$ vertices, the corona $mathrm{G}circmathrm{H}$ of $mathrm{G}$ and $mathrm{H}$ is the graph obtained by taking one copy of $mathrm{G}$ and $n$ copies of $mathrm{H}$ and then joining the $i^{th}$ vertex of $mathrm{G}$ to every vertex in the $i^{th}$ copy of $mathrm{H}$. The neighborhood corona $mathrm{G}starmathrm{H}$ of $mathrm{G}$ and $...
متن کامل